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In this paper consideration is given to three-dimensional flows of an 

ideal gas in Lava1 nozzles, which have discontinuities in the first deri- 

vatives of the velocity components on particular characteristic surfaces. 

The sofutions obtained yield examples of transformations from three- 

dimensional gas flows into plane-parallel and axial-symmetric flows, and 

also into other flows in space. 

1. Statement of the problem. Let us investigate the flow of an 

ideal gas in a Lava1 nozzle which has two planes of syrrznetry. Let the 

origin of the cylindrical coordinate system n, r, 8 be coincident with 
the throat of the nozzle and the x-axis be coincident with the axis of 

the nozzle, We write the equation which determines the flow of the gas in 

the region of the sonic surface in the form 

-W?!?+C!&_!$ !&--!-~=o (1.2) 

where q5 is a potential and 

where us, vr and v$ are the 
axes. lhe velocity is equal 

a, $9 --- 7 &. ) a* 1 ap, 
x+1 ar 

---=~~ 
x+1 r&3 

velocity perturbations along the x, r, and 6 
in magnitude to the critical velocity a and * 

is directed along the nozzle axis; I( is the exponent of the Poisson 

adiabatic. 

In Reference (1) the solution of equation (1.1) was obtained which 
describes the flow in analytical Lava1 nozzles; this solution will serve 

as the basis for further investigation: 
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cp = $,x2 + c& - cg cos 28) x9 + Q(:, -~cc,cos28+c,cos48)r" 

K+l 
- vx = CIX + $2 

1 

a, 
,--c2c0s2+ 

(1.2) 
x+i - 8, =1 Cl2 

“* ( 
f - 2c, cos.23) zr $- $3 pE - & c* cos 28 + 4c, cos 48) ?J 

x-t-1 - V& = 
a* 

2c12c2zr sin 2% + cl5 (F cz sin 2% - 4c, sin 43) r3 

Hereafter we will always assume that c1 > 0. If in the fozmulas (1.2) 
c1 = c2 = 0 is assumed, then we obtain the flow in a round nozzle; assum- 
ing 1 cl 1 = l/4, c2 = l/192 we have the case of plane flow I l-4 I. 

In the supersonic region of the flows considered, i.e. in the region 
situated downstream of the surface of transition 

--=cC1(f+C2)y2+cl(~-Cg)22 (1.3) 

there corresponds to every point in space its characteristic cone. 'lhe 
curves which envelop these cones form characteristic surfaces. In Refer- 
ence [l] the solutions of four such characteristics were obtained which 

possess the same planes of symnetry as the nozzle itself. ‘lhey pass through 

its throat and do not have discontinuities: 

5 - ; Cl [2 - (6, + 6,) + (6, - 6,) cos 291 r’2 

5 = &[2T(6, - 8,)-J-(82 -t_ 6,) cos 281 rs 

z-~c,[2+(8,+6,)-(6,-6,)c0s29]r~ 

(1.4) 

where 

6,=v5---NC, , 6,=V'5+16c, 

It follows that the solutions of (1.4) exist only for [ c2 14 S/16. Let 

us denote the characteristic surfaces, which are tangent to the surface 
of transition (1.3) at the throat of a nozzle and which extend all the 
way up and down along the stream by c_' and c 
of the formulas (1.4) then gives for c_* au e 1 

', respectively. The first 
liptical paraboloid for 

I c2 I < l/4 c_ * for 1 c2 / = l/4 - c_’ a parabolic cylinder and for [ c2 1 > l/4 
a hyperbolic paraboloid. lhe last of the formulas (1.4) for any acknissible 

c2 gives for c+’ an elliptical paraboloid, Along this surface are propagated 
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the perturbations which originate from the throat of the nozzle at the 

origin of the coordinates. The second of the formulas (1.4) describes two 

characteristic surfaces. For 1 c2 1 < l/4 both fonn hyperbolic paraboloids; 

for 1 c2 1 = l/4 one of them will be a c+‘-parabolic cylinder, and the 

second a hyperbolic paraboloid; for 1 c2 1 > l/4 one of the surfaces becomes 

a c+ 
0 -elliptical paraboloid, while the other remains a hyperbolic para- 

boloid. 

In this manner, characteristic c_’ -surfaces exist only for ( c2 I < l/4 

which is a natural consequence of the form of the surface of transition 

(1.31. For S/16 < I c2 1 < l/4 two c O-elliptical paraboloids extend down- 

stream from the throat of the nozz 1 e which are tangent to each other along 
the curve lying in the planes y = 0 and z = 0 depending on the sign in 

the second equation of (1.4). 

The outside c+‘- paraboloid is given by the second formula of (1.4) and 
the inside paraboloid by the last formula. The parabola formed by the 

cross-section of the outside c+‘- paraboloid with the planes z = 0 and 

y = 0 correspondingly is the curve which serves as the boundary for the 

point sources lying in these planes; these sources are within the curve. 

Perturbations originating from them therefore do not reach the sonic sur- 

face. If the sources are placed outside the above parabola, then the per- 

turbations caused by them will reach the surface of transition. For 

( c2 1 = S/16 both c+ O-elliptical paraboloids coincide. In the plane case, 

i.e. for ( c2 1 = l/4 the c_’ and also the outside c+‘-elliptical para- 

boloids are transformed into c_‘- and c+‘-parabolic cylinders. For 

I c2 1 > S/16 no characteristic surface exists which does not touch the 
sonic surface at any place besides the nozzle center and which extends 

downstream. 

Let us now investigate the propagation of weak discontinuities, i.e. 
the discontinuities in the first derivatives of the stream velocity com- 

ponents along the characteristic surfaces. In particular we will consider 

only the singular co- characteristic surfaces, i.e. those that touch the 
surface of transition at the throat of the nozzle. In the general case 

this problem is reduced to the investigation of all possible continuations 

of the solution (1.21 of the equation (1.1) for which for F = 0 the 

stream velocity is directed along the nozzle axis into the region down- 

stream of the corresponding characteristic. Of greatest interest here is 

the problem of the reflection of discontinuities from the throat of the 
nozzle. ‘Ihis problem is considered in this paper. Let us consider there- 

fore that the undisturbed flow, in which the transition through the velo- 

city of sound takes place, is given by the formulas (1.21. This flow 
extends upstream from the characteristic surface given by the first of 
the formulas (1.4). We will denote this region by the number I and assume 

that within it 
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Cl = Al, c2 = %r c2 = ml, Al' =1/5 - 16nl, A; = 1/5 + 16n, 

It is evident that the solutions of the equation (1.1) in the region 

situated downstream of the indicated surface, may be expected to have the 

f0I.W # = r4f(& 8), 5 = X/F ‘. In this way the problem is reduced to the 

integration of a partial differential equation of the second order with 

two independent variables: 

(1.5) 

Ihe initial conditions for the equation (1.5) are given along the 

curve 

5 = bA,[2 -'(A,'+ A,')+ (A,'-Ar')cos 281 (1.6) 

'lhe desired solutions must satisfy the condition 

vr = V& = 0 for_ r:=O 

2. Some properties of the equation (1.5). Characteristic curves 
of the equation (1.5), corresponding 

equation 

to integral (1.2), are given by the 

de2 + (4E2 - ciE - fciz + c12c2 cos 29)dW = 0 (2-l) 

It follows that equation (1.5) is of the hyperbolic type in the region 

52-;cCIE +cq;-C* cos 28) <o 

and is elliptic if 

E2 -kc,; - ; Cl2 
( 
; - cz cos 28 

) 
> 0 

Along the curves. 

[E Bc~ (1-&1/5-l6~2 COS 28) (2.2) 

the type of the equation changes. From equation (2.2) follows that for 

(2.3) 

there exists a region of values 8 for which, for any values of t, equation 

(1.5) is an equation of the elliptic type. Inequality (2.3) is the result 

of the fact that for these values of c2 no characteristic surface exists 

touching the surface of transition only at the nozzle throat (see 1). 

Let us now note that curve (1.6) is an integral for equation (2.1) and 

is consequently a characteristic of equation (1.51, i.e. the character- 

istic surface (1.4) of equation (1.1) has become the characteristic curve 

of equation (1.5). 'lhe problem set out in the preceding paragraph natur- 

ally has an infinite number of solutions. 
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'Iheir general investigation is quite difficult, though equation (1.5) 

is simpler than the original equation (1.1). In references [ 2,4 1 it was 
determined, however, that for the plane and round nozzles the discon- 

tinuities in the first derivatives of the velocity components passing 

along the c_' characteristics into the throat of the nozzle are generally 

speaking reflected from the throat along the c+' characteristics in the 

form of discontinuities in the second and third derivatives. 

'lhere exists a unique flow which is finite and in which the discon- 

tinuities in the first derivatives are also propagated along the c+' 

characteristics. 

'lhe flows with the said property may be expected to be finite in the 

general case also. We will establish their structure. 

3. Construction of the solution. 'lhe discontinuities in the 

first derivatives of the stream velocity components brought into the 

nozzle throat along the first of surfaces (1.4) are reflected from it 

along one of the other three surfaces (1.4). 'lhese surfaces may be diffe- 

rent for different values of nl, which follows from the results presented 

in references [ 2,4 1. 

‘he region extending downstream from the particular characteristic 

along which the "reflected" discontinuities propagate will be marked II; 

and that situated between the two c_ ' characteristics indicated III. 

The solution in the region II and III may be expected to appear as before, 

in form (1.2). Let us assume that in region II 

~1 = A,, c2 = n2, cs = m2, AIn = v/5 - 16n,, A/=1/5+ 16n, 

while in region III 

Cl -= A, cT 1 n, CQ = 111 

Along the characteristic surfaces separating the regions I and III and 

II the values vZ, vr, and v,g must coincide. 'lhese conditions establish 

the equations which allow the quantities A, n, m and A,, n2, m2 to be ex- 

pressed in terms of the values A,, R,~, ml which characterize the un- 

disturbed flow. When writing the desired equations we assume that the 

weak discontinuities are reflected along the last of surfaces (1.4). 

Along the c_' characteristic separating regions I and III we have 

$ Al2 [2 -(A2' + A,')] + Ai2 = $-AA, [2 -(A2'+ Ai')]+ A? 

$ A,” (A2'- Ai')- A12n, = i AA, (A,'- A,')- A2n 

$A,3 [2 - (A2' + A,')] - A,3n, (A,' -AI') $- AIs = 

= + A2A,[2- (A2'+ Ai,')]- A2A,n (AZ'-A,')+ A3 (3.1) 
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$ A13n1[2 - (AZ' + A,')]- & L~,~(A~'- Al') + $A13n, = 

= $A2A,n [2 -.(A2' $ A,')]-&PA,(A,'- Al') + f A3n 

-$ A13n, (A2' - A,') - 4A13m, = $- A2A,n (A2' - Al') - 4A3m 

fA13nl [2 - (A,’ + Al’)1 + f A, snI = $ A,A+ 12 - (A~' + A~')] + $ ~3n 

Analogously, along the c_' characteristic separating the regions III 
and II, we obtain the second group of equations: 

$ AZ2 [2 + (A2’ + Al")] + A22 = + AA, [2 + (AZ" + &")I + A." 

+. A22 (A2*- AI") + Az2n2 = +AA, (AZ" -Al") + A2n 

+ A23 [2 + (A2” + A,")] + A23n2 (A2” - A,") + A23 = 

= $ A2A2 [2 + (A; + A;)] + A2A2n (A2” - AIn) + A3 (3.2) 

$ A23n, [2 + (A2” + A,")] + -$ A23 (A; - A;) + $ Az3n, = 

= f A2A2n [2 + (A2" + Al")] + &A2A2 (A2” - AI”) + $- A3n 

$ A23n2 (A2" - A/) + 4A23m2 = .+ A2A2n (A2' - Al") + 4A3m 

$ Az3n2 [2 + (A2” + Al")] + f A23n2 = f A2A2n [2 + (A2” + Al*)] + $ A3n 

In system (3.1) there are six equations and only three unknowns. Jiow- 

ever, it may be shown that quantities A and n determined from the first 

and the second equation also satisfy the third, the fourth and the sixth 
equation of this system. The fifth equation serves to determine the value 

of tn. Therefore the over-determination of the system of equations (3.1) 

is illusory. ‘Ihe same may also be said concerning the equations (3.2). 

The first of equations (3.1) is quadratic with respect to the quantity 

A. Its one root may be determined at once. A = A,. The flow that corres- 
ponds to this root pertains to an analytical nozzle and, therefore, we 

are not interested in it. ‘lhe second root is given by the equation 

A= -+AA,(6-An,'-A,') (3.3) 

The value n corresponding to it is determined from the second equation 
(3.1): 

n= 4Snl-5 (AZ'-Al') 
2 (6 - A-’ - Al’)a 

(3.4) 

‘Ihe quantity m is now given by the relationship 
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m _ 5 (A,’ - A1’)2 - IGn, (A,’ - A,‘)- 204&n, 
- 

32 (6 - 112’ - Al’)s (3.5) 

Analogously, from equations (3.2) we find 

A=-_tAz(6+A,“+A,“) (3.6) 

n = 48n2 + 5 (AZ” - Al”) 
2 (6 -I- AZ” + AI”)~ 

m -_ 5 (A,” - Al”)2 + 16~ (A$“- A,“) - 204fht 
32 (6 + AZ” + AI”)* 

-- 

(3.7) 

(3.8) 

Equating quantities (3.3)-(3.~) to the corresponding quantities (3.6)- 

(3.8), we may obtain values A , 
the parameters of the basic T 

n2 and m2 expressed dikktly in terms of 
f ow. 

In exactly the same manner we may investigate the flows when the per- 

turbations, brought into the throat are reflected from it along the co 

chaqtcteristic surfaces given by the second formula of (1.4). As a result 

we obtain 

&(6-A;- Ar’) = A, (6 T As” t A,“) Wf 
48n, - 5 (As’ - Al’) 

(6 - As’ - Al’)2 
= 48nz 7 5 ( 12” + AI”) 

(6 ‘f Ax” f Al”)e 
(3.10) 

5 (A,’ - AI’)4 v 1612~ (AZ’ - Ah,‘) - 2048~~1 
--(6- AZ’ - AI’)8 

:= 
(3.11) 

5 (A,” + AI”)2 f f6nz (A,” + A,“) - 204th.~ =_--- 
(6 rf Azn f AI”)~ 

The signs in formulas (3.9)-(3.11) are to be chosen in accordance with 

the signs of relationship (1.4). 

lklationships (3.1)“(3.11) were obtained by continuing the first deri- 

vatives a+/&, d #/&, 8 +/a 8 , which belong to the analytically diffe- 
rent solutions along the corresponding characteristics. lhese conditions 

express the requirement that the physical quantities must be single- 

valued. J3ut they also guarantee the continuity of the function 4 itself 

on the characteristic surfaces indicated, 

The dependence of ratio AZ/A, on quantity nl, given by formulas (3.3), 
(3.6) and (3.9), is represented in Fig. 1 where NI = lhnl. 

The dependance of parameter II on the same quantity n , described by 

equations (3.4), (3.7) and (3.10?, is given in Fig. 2, wkere N = lenI , 
andN2= 16n. 

J 
l’he solid line is for flows for which weak discontinuities 

are reflecte from the nozzle throat along the characteristic surfaces in 
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accordance with the last of formulas 11.41, while the broken line refers 

to the second of these formulas. 

It is seen frcxn Fig. 2 that the undisturbed stream which possesses 

axial symnetry transforms into another axi-symmetric flow. Bt if we were 

to distort the basic stream (i.e. change quantity nt slightly), then the 

flow behind the c+’ elliptical paraboloid will increasingly deviate from 

axial synrnetry, while the paraboloid itself will begin to flatten out. 

For ni = + 0.047 we have n2 = + l/4 i.e. the given three-dimensional flow, 

which generally speaking approximates to the stream in a round nozzle, 

transforms into the plane-parallel flow existing inside the c+O elliptical 

paraboloid. 

Fig. 2. 

For n1 E + 0.081 it is seen that n2 = i. S/16, and we obtain the flow 

in which both c+’ paraboloids coincide. If the absolute value of ni is 

increased still further, then the weak discontinuities brought into the 

throat along the c_ ’ characteristic* are reflected from it along the sur- 

face given by the second formula of (1.4). This surface is of the form of 

the outside c+’ elliptical paraboloid, which proceeds to flatten out with 

increase of 1 nl \ , and which for 1 n1 1 0.12 transforms into a c+O para- 

bolic cylinder with a plane-parallel flow within. For 0.12 < 1 n1 1 < l/4 

the characteristic surface along which the reflection of weak discontin- 
uities takes place is of the form of a hyperbolic paraboloid, vdich for 
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1 n1 1 0.19 the resulting flow transforms into an axi-symmetric flow. For 

n 1 = + l/4 we have n2 = i l/4, i;e. the plane stream transforms into an- 

other plane flow. For ( nl 1 > l/4 the c_ ’ characteristic transforms into 
a hyperbolic paraboloid, while for the c+ ’ characteristic surface there 

appears first the outside then for 1 nl 1 > 0,275 the inside elliptical 

paraboloid. These two coincide for the latter value of I nl I . 

For I nl I > 0.12, one of the characteristic surfaces in which the dis- 
continuities in the second derivatives of the function 4(x, r, 01 occur 

is a hyperbolic paraboloid. In this case the expression “reflectior~ be- 

comes inexact for these values of nl (the exception is the case when 

n=+ l/4). 

Note that for n1 E 2 0.306 we obtain the flow with axial symzetry in- 

side the c+O -paraboloid of revolution. ‘lhe flows investigated thus furnish 

examples for’ the transformation of some of the three-dimensional flows 
into plane-parallel and axi-symnetrical flows. 

From Fig. 1 it follows that the flows in round nozzles possess a 

minimum coefficient A, for the given value A,, compared with all the flows 

investigated. By analogy with the results in references 12-4 1 , we may 

expect the curve of Fig.’ 1 to define the minimum value of ratio .4,/A, 

which may be obtained for the given values of nl. 
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